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Simple ciphers

Atbash (aleph-tab-bet-shin) –
ℵ → ת! etc.

Caesar’s Cipher – En(x) = x+ n
mod N(Σ)

Scytale – using a physical
cylinder

Polybius Square

Figure:Wikicommons, Avi1111 dr. avishai teicher, CC BY 3.0

Figure:Wikicommons, Cepheus, domena publiczna

Figure:Wikicommons, Luringen, CC BY 3.0

Figure:Wikipedia, CC BY 3.0

https://commons.wikimedia.org/wiki/File:Or_Torah_Synagogue_in_Acre.JPG
https://commons.wikimedia.org/wiki/File:Caesar3.svg
https://commons.wikimedia.org/wiki/File:Skytale.png
https://en.wikipedia.org/wiki/Polybius_square


1. Atbash - a simple mono-alphabetic representation cipher, involves converting a letter at a distance r from the
beginning of the alphabet into a letter at a distance r from the end of the alphabet. Its name comes from the way it
works, i.e. one by one which letters are converted into which: alef into taw, beth into shin, and so on. Its decryption
is very simple - just parse the encrypted text again in the same way to get the plaintext. It also occurs in the Bible:
Jeremiah 25:26 and Jeremiah 51:41 – Babylon is spelled as Sheshak, Jeremiah 51:1 – Chaldeans are Leb Kamai.

2. Caesar’s cipher - each letter of the plaintext is swapped with another letter lying n positions away in the alphabet
from the original one. Caesar used the shift with key 3 to encrypt private correspondence. It is now used in puzzles
and other simple toys.

3. Skytale - a method of encryption used in ancient Sparta. A narrow strip of parchment is wound onto a stick, writing
the text on the edges along the stick at the touching edges. With a rod of identical thickness, the plain text can be
read. The diameter of the rod is therefore the key.

4. Polybius square - the key is a table assigning each letter a row and column number (encrypted text).
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Less simple ciphers

ROT13 – Caesar’s cipher with the rotation of the
half of the alphabet

Figure:Wikicommons, domena publiczna

VIC cipher

Figure:Wikicommons, R. Fallon, CC BY-SA 4.0

https://commons.wikimedia.org/wiki/File:ROT13_table_with_example.svg
https://commons.wikimedia.org/wiki/File:Flow_diagram_of_the_VIC_Cipher.png
https://creativecommons.org/licenses/by-sa/4.0/


1. ROT13 - Caesar’s cipher with an offset of 13 (half the length of the Latin alphabet). It is its own inverse (we encrypt
and decrypt with the same function). Used sometimes on internet forums/usenet to hide spoilers and other
sensitive messages where the author wanted to avoid accidental reading.

2. VIC - a cipher used in the 1950s by Soviet spies in the US, named after the spy Reino Häyhänen, alias ‘VICTOR’. It is
one of the most complex ‘paper’ ciphers (counted using a piece of paper and a pen). It is based on the Nihilist
cipher, a basic cipher with a double key, similar to Polybius’ square. The encryption is divided into two stages: we
create the keys and, based on them, a Polybius square with a bifurcation and two arrays where the cipher digits are
shuffled. Four fixed elements are needed: a group of six digits (e.g. a date), a sequence of 20 letters, a key word and
one short number, and a variable element - a five-digit number invented once for each plaintext. Stage two is
encryption: using a checkerboard, the plaintext is converted into a sequence of digits, which is then shuffled by
rearranging the columns. The sequence of digits is then divided into five-digit groups and a variable element is
added to the sequence.
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Enigma

Portable electromechanical cipher machine:

mechanical part - keyboard, rotors on a common axis
and a mechanism that rotates one or more rotors;

electrical circuit - encoding is done electrically;

single rotor - simple substitution cipher;

plugboard - additionally swapping some letters;

initial setting (which is the key) - the order of rotors,
initial position of rotors, rotors setting, plugboard
setting

Figure:Wikicommons, domena publiczna

https://commons.wikimedia.org/wiki/File:EnigmaMachineLabeled.jpg


1. Operating procedure - set the rotors according to the daily setting (codebook), select a random combination of
rotor settings (individual message key) and broadcast it at the beginning of the transmission.

2. The difficulty is that each letter of the plaintext is encrypted using a different permutation of the alphabet, each
letter having a different substitution cipher.

3. The objective is to obtain the daily setting.
4. The bomb (bomba kryptologiczna) – an electric-mechanical machine for automatically breaking the daily cipher.

Initially designed by cryptologists from the Polish Cipher Bureau for an early (smaller number of cipher drums and
different encryption procedure) version of Enigma. The concept was improved by Alan Turing (the approach of
looking for certain words, such as ‘Wetter’ (weather) or a Nazi greeting - thus ruling out a lot of possible settings).
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One-time pad

It is not possible to crack this method!

the key is single-use,

the key is as random as possible (discrete
uniform probability distribution),

the key is at least the length of the
plaintext,

the key cannot be reused even partially,

the key must be secret for the third-party.

Figure:Wikicommons, domena publiczna

https://commons.wikimedia.org/wiki/File:NSA_DIANA_one_time_pad.tiff


1. Each key is used only once. It is created completely at random, and once encrypted, the messages must be
destroyed.

2. Using, for example, a polyalphabetic cipher, it is possible to achieve complete message security, since for each pair
T and S (plaintext and encrypted text) there is a matching K key, i.e. knowing only S we can match anyM of the
same length and calculate the matching key.

3. Even up until the 1970s, the National Security Agency (NSA) was creating single-use keys used for general-purpose
but also special-purpose codes, such as nuclear codes.
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A Mathematical Theory of Cryptography

In the 1940s, Claude Shannon described the basics of information
theory:

A Mathematical Theory of Communication – quantification of
the level of uncertainty (Shannon entropy):
H = −

∑n
i=1 pi log pi,

A Mathematical Theory of Communication – examination
methods for cryptographic systems (the probability of
receiving certain values),

A Mathematical Theory of Communication – two types of
systems: unconditional secrecy and conditional secrecy,

Communication Theory of Secrecy Systems – all
unbreakable ciphers have the limitations of a cipher with a
one-time key.

Figure:Wikicommons, Konrad Jacobs, CC BY-SA 2.0 de

https://commons.wikimedia.org/wiki/File:ClaudeShannon_MFO3807.jpg
https://opc.mfo.de/detail?photo_id=3807
https://creativecommons.org/licenses/by-sa/2.0/de/deed.en


1. Entropy is used to measure the amount of information available in a message. It measures the amount of
uncertainty, the more information is contained in a message, the smaller it is. Entropy is subject to standard
mathematical transformations, so values such as conditional entropy can be determined
(H(Y|X) =

∑
x∈X p(x)

∑
y∈Y p(y|x) log 1

p(y|x) =
∑

x∈X
∑

y∈Y p(x, y) log p(x,y)
p(x) , where p(y|x) is the probability of the

result y if and only if x is true, p(x, y) is the joint probability) or mutual information – the amount of information

shared by two systems (I(X; Y) = H(X)− H(X|Y) =
∑

y∈Y
∑

x∈X p(x, y) log p(x,y)
p(x)p(y) ).

2. When examining a language from the cryptographic side, all we care about are the statistical properties of a
language: the distribution and frequency of characters, binary characters, words, phrases and so on.
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Symmetric-key cryptography

The first type, more similar to the initial systems:

we use the same key to encode and
decode,

the key is as random as possible (discrete
uniform probability distribution),

a secure key exchange protocol must be
established,

there are two types: block ciphers and
stream ciphers.

Figure:Wikicommons, Michel Bakni, CC BY-SA 4.0

https://commons.wikimedia.org/wiki/File:Simple_symmetric_encryption-en.svg
https://commons.wikimedia.org/wiki/User:Michel_Bakni


1. The keys do not necessarily have to be the same, and a simple (i.e. performed in polynomial time) transformation
between two keys can also be used. Effectively, this means that systems of this type require a shared secret and
the longer the secret, the better.

2. This secure key exchange protocol is often a simple key transfer procedure using asymmetric encryption. Although
this is not intuitive at first glance (if we already have a secure channel for exchanging information, why create a
second one?), but symmetric algorithms are very efficient (see AES) and doing it this way leads to significant
savings in computing power/time. There are, however, other classical key exchange protocols which are not the
subject of this presentation.

3. Block ciphers, as the name implies, divide the plaintext (in either byte or letter form) into blocks and encrypt the
individual blocks as a whole. Stream ciphers encrypt each character (or byte) one at a time - to simplify, we can say
that stream ciphers are block ciphers with a block size of 1.
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Advanced Encryption Standard (Rijndael)

The algorithm that won the 1998 competition for a new standard for
encryption run by NIST (National Institute of Standards and
Technology):

the most popular symmetric-key algorithm;
it uses a byte matrix of size 4× 4:

1. each byte is added with the corresponding byte from the key
(XOR),

2. we conduct 9/11/13 rounds: substitution + row shifting + column
mixing + addition of key byte,

3. the final round without mixing columns;

there are three types: 128 bits of the key, 192 bits albo 256 bits;

the algorithm is (currently) secure, 2126.2 operations for 128
key bits (4.36 ∗ 1017 seconds since the Big Bang).

Figure:Wikicommons, public domain (CC0)

https://en.wikipedia.org/wiki/File:AES_(Rijndael)_Round_Function.png
https://creativecommons.org/publicdomain/zero/1.0/


1. AES is a sub-family of the Rijndael family of algorithms, created by 2 Belgian cryptographers Vincent Rijmen and
Joan Daemen, for a competition organised by NIST.

2. The number of rounds depends on the key length: 128 bits gives 10 rounds (including the last one), 192 is 12 rounds
and 256 is 14 rounds.

3. The substitution cipher is non-linear and based on a certain matrix, the shifting of rows and the mixing of columns
are done within a 4× 4matrix (these are the transposition steps).
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Asymmetric cryptography

We use two different keys for encoding
(public key) and decoding (private key);

the public key can be made available to
anyone without the loss of security;

it is also possible to use this technique for
digital signing;

for RSA, a security condition is that it is not
possible to factorise numbers composed of
two large prime numbers quickly.

Figure:Wikicommons, public domain

https://commons.wikimedia.org/wiki/File:Asymmetric_Cryptography.svg


1. Asymmetric encryption is sometimes called the public key encryption.
2. The key is that it should impossible to obtain the private key by just knowing the public key - we rely here on the

properties of one-way functions, easy to compute one way, but the inverse function is difficult - e.g. multiplication
of two large prime numbers is easy, but factorisation is extremely computationally difficult.

3. The security of the RSA algorithm is symmetric - knowing the public key we cannot know the private key and vice
versa. Let us denote the public key as (e, n) and the private key as (d, n). Let p and q be two large and close in
length prime numbers generated as randomly as possible. We obtain d and e from the equation de ≡ 1(
mod (p− 1)(q− 1)), where p and q are then treated together as n, and either of the numbers, either d or e, is
drawn randomly.

4. A digital signature system can be achieved, for example, by swapping the RSA public and private keys in place. The
digest (hash) of the message is encrypted with the public key (in the application of encryption) and verified with the
private key. It is therefore sufficient to provide a private key instead of the public key and we can sign messages
digitally.
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The basic unit of information

1. Classical – bit (b = 0 ∨ b = 1)

2. Quantum – qubit
(|q⟩ = |0⟩ ∨ |q⟩ = |1⟩ ∨ . . .)

φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|Ψ⟩

Figure: Glosser.ca, Wikicommons, CC BY-SA 3.0

https://commons.wikimedia.org/wiki/User_talk:Glosser.ca
https://commons.wikimedia.org/wiki/File:Bloch_Sphere.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en


Information processed in classical computers is stored as numbers in the binary system. In the case of quantum

computers, on the other hand, information is processed using quantum physical objects described in a two-dimensional

Hilbert space called qubits. The physical implementation is possible, for example, as the polarisation of a single photon or

an elementary particle with spin 1/2.
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Superposition

|ρ⟩ = c0 |0⟩+ c1 |1⟩ =
[
c0
c1

]
where c0, c1 ∈ C oraz c02 + c12 = 1.

Quantum states can be added and new quantum states can be created from them, when
measuring we get base states, e.g. 0 or 1.
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Entanglement

The system is better described than its components

|ρ⟩12 = c00 |0⟩1|0⟩2 + c01 |0⟩1|1⟩2 + c10 |1⟩1|0⟩2 + c11 |1⟩1|1⟩2

for comparison

|ψ⟩1 ⊗ |ϕ⟩2 = (a|0⟩1 + b|1⟩1)⊗ (c|0⟩2 + d|1⟩2),

|ψ⟩1 ⊗ |ϕ⟩2 = ac |0⟩1|0⟩2 + ad |0⟩1|1⟩2 + bc |1⟩1|0⟩2 + bd |1⟩1|1⟩2
is not equal to the first one!

Additionally c002 + c012 + c102 + c112 = 1.
We are not able to describe a system of particles using the states of its constituent particles
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Constraints

In the case of quantum computing, there are certain constraints on the construction of solutions,
stemming directly from the limitations of quantummechanics.

1. Reversibility – quantum operations are reversible, any gates provide the opportunity to
return to the information contained in the input.

2. No-cloning theorem – that it is impossible to create an independent and identical copy of an
arbitrary unknown quantum state.
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Shor‛s Algorithm

Take a certain natural number N. The goal is to find the divisor of this number (in practice, the
decomposition into prime factors of the product of two large prime numbers) Classical

computing: there are no polynomial solutions to this problem: O(e
3
√

64
9 b(log b)2).
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The Shor algorithm - why is it an issue?

The difficulty in factorising the product of two large prime numbers is the basis of the RSA
asymmetric algorithm used for key distribution. So we have the ability to encrypt using a

symmetric key, but key exchange is a problem.

(or at least we won’t have until such an algorithm can for sufficiently large numbers be executed
on an existing quantum computer, but shhh)
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What is that exactly?

Using quantummechanics methods for cryptographic purposes:

1. cryptanalysis, undermining the security of classical ciphers;

2. quantummethods of information encryption;

3. quantum key distribution methods.



1. Some classical ciphers, for example, are susceptible to facilitating problems that are computationally complex for
classical computers (e.g. factorisation of prime numbers or computation of the discrete logarithm), but there are
proven proposals for quantum algorithms that, when executed on suitable quantum computers, could allow fast
computation of such problems. This problem applies to RSA, for example.

2. Quantum objects and their properties (e.g. superposition) can be used to encode information. For example, we can
use the polarisation of photons for this purpose. Let us impose that the horizontal polarisation is 0 and the vertical
polarisation is 1. We can also shift this arrangement by 45 degrees. So in this case, we have two possible types of
encoding - normal and rotated by 45 degrees. Our key, then, is to know how we should position the polarisers in
turn. If we set them up incorrectly, we will get either 0 or 1 with equal probability.

3. Since we are using symmetric methods such as RSA to exchange the symmetric key, maybe we can use a quantum
method to accomplish this task?
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Quantum key distribution

Since we use symmetric methods such as RSA for key distribution, maybe we can use some
quantummethod to accomplish this task?

1. the method does not necessarily allow for a consistent exchange of information;

2. two types of protocols: prepare and measure or entanglement-based;

3. prepare-and-measure methods exploit the property of superposition in an unknown (to the
eavesdropper) quantum state;

4. entanglement methods exploit the properties of quantum entanglement - a measurement
on one qubit will cause changes in the state of the other one.

The key here is to obtain an identical bit sequence (e.g. 128 bits) between the two parties to the
conversation in a way that makes it impossible for a third party to intercept this. As we will see in
example BB84, this property actually occurs despite the loss of a large portion of the initially
generated bits of the sifted key.
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Quantum key distribution – BB84

It has been published in 1984 by Charles H. Bennett and Gilles Brassard.

Alice and Bob are connected by a quantum communication channel, allowing for the
transmission of quantum states (e.g. optical fibre).

In addition - a public, classic, unsecured (but authenticated) channel.

We assume that the eavesdropper (Eve) can interfere with, tap into etc. the quantum
channel.

We encode information using non-orthogonal states.
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Quantum key distribution – BB84

1. Alice generates one bit (either 0 or 1), randomly chooses the base in which to encode this
value, and then creates the corresponding qubit.

2. Transmission of the qubit follows – eavesdropping by Eve may occur.

3. Bob randomly selects a base in which to measure, records that base and the read bit.

4. Bob then announces over the public channel which base he used for the readout.

5. Alice checks which bases match and rejects where they do not match.



There are various ways in which this protocol can be attacked. The first one worth mentioning is the intercept-and-resend

attack, which, as the name suggests, involves intercepting a qubit with encoded information and trying to read it. With two

possible non-orthogonal bases, we have a 50% chance of succeeding. Such an attack, however, causes a corresponding

quantum error that can be detected by the authentic communication parties. Another type of attack is photon number

splitting. Weak lasers are usually used to create the photons used in communication, so just one photon per bit is prepared

and sent away. Unfortunately, very often this is not possible and two or three photons are actually prepared. In this case,

these ‘excess’ photons are set up in the same way as our photon intended for communication. So the eavesdropper can

simply seize one of these redundant photons and store it, and measure it when the bases are announced. This problem

can be combated by a suitable laser constitution, or by using a different protocol operating on the same method but with

different announced elements, etc., e.g. SARG04, which was developed to counteract the effects of this very attack.
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Quantum key distribution – BB84

Quantum transmission
Alice’s random bits 0 1 1 0 1 1 0 0 1 0 1 1 0 0
Random sending bases × + × + + + + + × × + × × ×
Photons Alice sends ↗ ↑ ↘ → ↑ ↑ → → ↘ ↗ ↑ ↘ ↗ ↗
Photons receiving bases + × × + + × × + × + × × × ×
Bits as received by Bob 1 1 1 0 0 0 1 1 1 0
Public discussion
Bob’s reported bases + × + × × + + × × ×
Alice’s feedback ✓ ✓ ✓ ✓ ✓
Initial key 1 1 0 1 0
Bob reveals randomly 1 0
Alice’s confirmation ✓ ✓
Outcome
Sifted key 1 0 1
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